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Abstract
We propose an interpolation formula for the distribution of the reflection
coefficient in the presence of time reversal symmetry for chaotic cavities
with absorption. This is done assuming a similar functional form as when
time reversal invariance is absent. The interpolation formula reduces to the
analytical expressions for the strong and weak absorption limits. Our proposal
is compared to the quite complicated exact result existing in the literature.

PACS numbers: 73.23.−b, 03.65.Nk, 42.25.Bs

1. Introduction

In recent years there has been great interest in the study of absorption effects on transport
properties of classically chaotic cavities [1–18] (for a review see [19]). This is due to the fact
that for experiments in microwave cavities [20, 21], elastic resonators [22] and elastic media
[23] absorption is always present. Although the external parameters are particularly easy to
control, absorption, due to power loss in the volume of the device used in the experiments, is
an ingredient that has to be taken into account in the verification of the random matrix theory
(RMT) predictions.

In a microwave experiment of a ballistic chaotic cavity connected to a waveguide
supporting one propagating mode, Doron et al [1] studied the effect of absorption on the
1 × 1 sub-unitary scattering matrix S, parametrized as

S =
√

R eiθ , (1.1)

where R is the reflection coefficient and θ is twice the phase shift. The experimental results
were explained by Lewenkopf et al [2] by simulating the absorption in terms of Np equivalent
‘parasitic channels’, not directly accessible to experiment, each one having an imperfect
coupling to the cavity described by the transmission coefficient Tp.
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A simple model to describe chaotic scattering including absorption was proposed by
Kogan et al [4]. It describes the system through a sub-unitary scattering matrix S, whose
statistical distribution satisfies a maximum information-entropy criterion. Unfortunately, the
model turns out to be valid only in the strong-absorption limit and for R � 1. For the 1 × 1
S-matrix of equation (1.1), it was shown that in this limit θ is uniformly distributed between
0 and 2π , while R satisfies Rayleigh’s distribution

Pβ(R) = α e−αR, R � 1 and α � 1, (1.2)

where β denotes the universality class of S introduced by Dyson [24]: β = 1 when time
reversal invariance (TRI) is present (also called the orthogonal case), β = 2 when TRI is
broken (unitary case) and β = 4 corresponds to the symplectic case. Here, α = γβ/2, and
γ = 2π/τa� is the ratio of the mean dwell time inside the cavity (2π/�), where � is the
mean level spacing, and τa is the absorption time. This ratio is a measure of the absorption
strength. Equation (1.2) is valid for γ � 1 and R � 1 as we shall see below.

The weak absorption limit (γ � 1) of Pβ(R) was calculated by Beenakker and Brouwer
[5], by relating R to the time delay in a chaotic cavity which is distributed according to the
Laguerre ensemble. The distribution of the reflexion coefficient in this case is

Pβ(R) = α1+β/2

�(1 + β/2)

e−α/(1−R)

(1 − R)2+β/2
, α � 1. (1.3)

In the whole range of γ, Pβ(R) was explicitly obtained for β = 2 [5]:

P2(R) = e−γ /(1−R)

(1 − R)3
[γ (eγ − 1) + (1 + γ − eγ )(1 − R)], (1.4)

and for β = 4 more recently [13]. Equation (1.4) reduces to equation (1.3) for small absorption
(γ � 1) while for strong absorption it becomes

P2(R) = γ e−γR/(1−R)

(1 − R)3
, γ � 1. (1.5)

Notice that P2(R) approaches zero for R close to one. Then the Rayleigh distribution,
equation (1.2), is only reproduced in the range of few standard deviations, i.e., for R � γ −1.
This can be seen in figure 1(a) where we compare the distribution P2(R) given by
equations (1.2) and (1.5) with the exact result given by equation (1.4) for γ = 20. As
can be seen, the result obtained from the time delay agrees with the exact result but the
Rayleigh distribution is only valid for R � 1.

Since the majority of the experiments with absorption are performed with TRI (β = 1) it
is very important to have the result in this case. Due to the lack of an exact expression
at that time, Savin and Sommers [8] proposed an approximate distribution Pβ=1(R) by
replacing γ by γβ/2 in equation (1.4). However, this is valid for the intermediate and
strong absorption limits only. Another formula was proposed in [16] as an interpolation
between the strong and weak absorption limits assuming a quite similar expression as the
β = 2 case (see also [13]). More recently [17], a formula for the integrated probability
distribution of x = (1+R)/(1−R),W(x) = ∫ ∞

x
P

(β=1)

0 (x) dx was obtained. The distribution

Pβ=1(R) = 2
(1−R)2 P

(β=1)

0

(
1+R
1−R

)
then yields a quite complicated formula.

Due to the importance of having an ‘easy-to-use’ formula for the time reversal case, our
purpose is to propose a better interpolation formula for Pβ(R) when β = 1. In the next section
we do this following the same procedure as in [16]. We verify later on that our proposal
reaches both limits of strong and weak absorption. In section 6 we compare our interpolation
formula with the exact result of [17]. A brief conclusion follows.
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Figure 1. Distribution of the reflection coefficient for absorption strength γ = 20 for (a) β = 2
(unitary case) and (b) β = 1 (orthogonal case). In (a) the continuous line is the exact result
equation (1.4) while in (b) it corresponds to the interpolation formula, equation (2.1). The triangles
in (a) are the results given by equation (1.5) for β = 2 and in (b) they correspond to equation (3.2).
The dashed line is the Rayleigh distribution equation (1.2), valid only for R � γ −1 and γ � 1.

2. An interpolation formula for β = 1

From equations (1.2) and (1.3), we note that γ enters in Pβ(R) always in the combination
γβ/2. We take this into account and combine it with the general form of P2(R) and the
interpolation proposed in [16]. For β = 1 we then propose the following formula for the
R-distribution:

P1(R) = C1(α)
e−α/(1−R)

(1 − R)5/2

[
α1/2(eα − 1) + (1 + α − eα)2F1

(
1

2
,

1

2
, 1;R

)
1 − R

2

]
, (2.1)

where α = γ /2, 2F1 is a hyper-geometric function [25], and C1(α) is a normalization constant

C1(α) = α

(eα − 1)�(3/2, α) + α1/2(1 + α − eα)f (α)/2
(2.2)

where

f (α) =
∫ ∞

α

e−x

x1/2 2F1

(
1

2
,

1

2
, 1; 1 − α

x

)
(2.3)

and �(a, x) is the incomplete �-function

�(a, x) =
∫ ∞

x

e−t t a−1 dt. (2.4)

In the next sections, we verify that in the limits of strong and weak absorption we reproduce
equations (1.2) and (1.3).

3. Strong absorption limit

In the strong absorption limit, α → ∞, �(3/2, α) → α1/2 e−α , and f (α) → α−1/2 e−α . Then,
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Figure 2. Distribution of the reflection coefficient in the presence of time reversal symmetry for
absorption strength γ = 1, 2, 5 and 7. The continuous lines correspond to the distribution given
by equation (2.1). For comparison we include the exact results of [17] (dashed lines).
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Figure 3. Difference between the exact result and the interpolation formula, equation (2.1), for
the R-distribution for β = 1 for the same values of γ as in figure 2.

lim
α→∞ C1(α) = α eα

(eα − 1)α1/2 + (1 + α − eα)/2
� α1/2. (3.1)

Therefore, the R-distribution in this limit reduces to

P1(R) � α e−αR/(1−R)

(1 − R)5/2
α � 1, (3.2)

which is the equivalent of equation (1.5) but now for β = 1. As for the β = 2 symmetry, it
is consistent with the fact that P1(R) approaches zero as R tends to one. It reproduces also
equation (1.2) in the range of a few standard deviations (R � γ −1 � 1), as can be seen in
figure 1(b).

4. Weak absorption limit

For weak absorption α → 0, the incomplete �-function in C1(α) reduces to a �-function �(x)

(see equation (2.4)). Then, P1(R) can be written as
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P1(R) � α

(α + α2/2 + · · ·)�(3/2) − (α5/2/2 + · · ·)f (0)/2

× e−α/(1−R)

(1 − R)5/2
[α3/2 + α5/2/2 + · · ·

− (α2/2 + α3/6 + · · ·)2F1(1/2, 1/2, 1;R)(1 − R)/2]. (4.1)

By keeping the dominant term for small α, equation (1.3) is reproduced.

5. Comparison with the exact result

In figure 2 we compare our interpolation formula, equation (2.1), with the exact result of [17].
For the same parameters used in that reference we observe an excellent agreement. In figure 3
we plot the difference between the exact and the interpolation formulae for the same values of
γ as in figure 2. The error of the interpolation formula is less than 4%.

6. Conclusions

We have introduced a new interpolation formula for the reflection coefficient distribution
Pβ(R) in the presence of time reversal symmetry for chaotic cavities with absorption. The
interpolation formula reduces to the analytical expressions for the strong and weak absorption
limits. Our proposal is to produce an ‘easy-to-use’ formula that differs by a few per cent
from the exact, but quite complicated, result of [17]. We can summarize the results for both
symmetries (β = 1, 2) as follows:

Pβ(R) = Cβ(α)
e−α/(1−R)

(1 − R)2+β/2

[
αβ/2(eα − 1) + (1 + α − eα)2F1

(
β

2
,
β

2
, 1;R

)
β(1 − R)β

2

]
,

(6.1)

where Cβ(α) is a normalization constant that depends on α = γβ/2. This interpolation
formula is exact for β = 2 and yields the correct limits of strong and weak absorption.
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